An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks
نویسندگان
چکیده
In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments.
منابع مشابه
Field Programmable Gate Array–based Implementation of an Improved Algorithm for Objects Distance Measurement (TECHNICAL NOTE)
In this work, the design of a low-cost, field programmable gate array (FPGA)-based digital hardware platform that implements image processing algorithms for real-time distance measurement is presented. Using embedded development kit (EDK) tools from Xilinx, the system is developed on a spartan3 / xc3s400, one of the common and low cost field programmable gate arrays from the Xilinx Spartan fami...
متن کاملNeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliv...
متن کاملAn FPGA platform for on-line topology exploration of spiking neural networks
In this paper we present a platform for evolving spiking neural networks on FPGAs. Embedded intelligent applications require both high performance, so as to exhibit real-time behavior, and flexibility, to cope with the adaptivity requirements. While hardware solutions offer performance, and software solutions offer flexibility, reconfigurable computing arises between these two types of solution...
متن کاملFPGA implementation of ReSuMe learning in Spiking Neural Networks
Recent simulation experiments with ReSuMe learning in Spiking Neural Networks (SNN) indicate that the networks of spiking neurons can be successfully applied to control neuroprostheses1. However, when considering efficient, portable neurocontrollers, one has to deal with the constraints defined by the task at hand, that is the strict requirements for the real-time operating of the controller, i...
متن کاملA Novel Approach for the Implementation of Large Scale Spiking Neural Networks on FPGA Hardware
This paper presents a strategy for the implementation of large scale spiking neural network topologies on FPGA devices based on the I&F conductance model. Analysis of the logic requirements demonstrate that large scale implementations are not viable if a fully parallel implementation strategy is utilised. Thus the paper presents an alternative approach where a trade off in terms of speed/area i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017